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ON THE LEAST FAVORABLE CONFIGURATION OF A
SELECTION PROCEDURE BASED ON RANKS

by
Shanti S. Gupta and Takashi Matsui
Purdue University Purdue University and
Dokkyo University
ABSTRACT

L) This doconent

et-uy consider;‘two types of statistics based on the sums of combined
(Wilcoxon type) ranks and vector (Friedman type) ranks. Underlying populations
are supposed to belong to the location or scale parameter family of d’.tributions.

Two approaches - subset selection and indifference zone - of .nking and
selection procedures based on these statistics are considered ir on asymptotic
framework for selecting the population with the largest parar er value. The
least favorable configurations of parameters are discussed ' computing the exact
moments of these statistics and introducing an assumptior Lf order relation

between the gaps of parameters. <
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ON THE LEAST FAVORABLE CONFIGURATION OF A
SELECTION PROCEDURE BASED ON RANKS

. Shanti S. Gupta* and Takashi Matsui
Purdue University Purdue University and
Dokkyo University
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I. INTRODUCTION

< Let k populations TP Mo Tgess Ty be given. A cumulative distribution function
(c.d.f) of population m is denoted by Fe (x), which is assumed to belong to the

i
location or scale family of distributions. A parameter 8 is taken from some

interval @ on the real line. F6 (x) is expressed as Fe (x) = F(x-ei) or

i i

- Fu (x) = F(X/ei) depending on whether it belongs to location or scale family.

X j

) FO'(x) will be denoted as Fi(x) or Fi for simplicity. Let the ordered parameters
. i

- of 67,65,...,8, be denoted as 8[1] < °[2] LIERE < 0[k]- Then we have

L4

- F (x) > F (x) > ... >F (x) (1.1)
N 8 L ¢ R S

N

~

- for all x. We call the population associate with Fe (x) the best population.
[k]

Y

N Hereafter, we assume that the population = is the best population, without loss
oY

. of generality.

L Take n observations X1], 12""’xin from populations wi(i=l,2,...,k) and

= consider the following two types of ranks and rank sum statistics. As we mention

- later, note that when we are dealing with scale parameters, absolute values of
the observations are used for obtaining the ranks.

} (I) Combined (Wilcoxon type) ranks

: *The research of this author was supported in part by the Office of Naval Research
- Contract N0O0014-84-C-0167 at Purdue University.
:
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Consider the combined rank of observation Xij

note the rank of Xij by Rg}) where Rg}) =5 if xij is the s-th smallest among

x]],xlz,...x'n,...,xk],xkz,...,xkn. Also we define

(1
H{ = 1 _&1 Rij), i = 1,2,000 0k (1.2)
Jj=
and
TR (LU SR LA (1.3)

(IT) Vector (Freedman type) ranks
Consider the rank of observations Xij among x]j,xzj, ...,ij. We denote the

(2) (2) . ¢ ; ;
rank of Xij by Rij where Rij s if Xij is the s-th smallest among

.‘(U,ij,...,xkj {j = 1,2,...,n). Rank sum statistic is defined as

@ . 1 2 .
H, = .Z Rij i=1,2,...,k (1.4)
j=1
and

#2) (H](Z), H§2),...’Hé2)).. (1.5)
Z; Now let us consider the following two approaches of ranking and selection
; procedures of selecting the best population based on rank statistics ﬂ(]) and
L ﬁ‘z). The first approach is a subset selection approach due to Gupta (see Gupta
i and Panchapakesan (1979)) and we select a subset of populations using following
1 selection procedures.
'
‘
g

among all kxn observations. We de-

P LA AT PR R g pil iy 2y~ EACRCINP A A A B i NI S S it sogy s [ S ehiStn ¥ |




- -‘:'— dl‘n'x.

Rla,p,1): Select . if and only if Hi(“) > max H§“) - ¢

i [
i=1,2,....k; dB > 0;a,p= 1,2, (1.6)

These same types of rules are used for selecting the best population with
either largest location (g=1) or scale (g=2) parameters, using statistics
ﬂ‘“), a = 1,2. The use of these rules is warranted by the Theorem 4.2 which we
mention later. In fact, Hk(“) corresponds to L in the sense stated in the theorem
for both location and scale parameter cases. A correct selection (CS) is said to
occur if and only if the best population (in our case nk) is included in the selec-

ted subset. OQur aim is to select a subset satisfying
inf P(CS|{R(a,8,1)) > P* (1.7)
Q
Where s RT ]'.2; ]/k < P* < ] andﬂ = {e_= (6],62,...,0k); O.ie e . i = ],2.---’k}-
Another approach we study is the indifference zone approach due to Bechhofer
(1954). The procedure is stated as follows.

R(a,r,2): Select the population associate with Hk(u) as the best. (1.8)

In this case, the rules R(«,8,2), «,8=1,2 are requested to satisfy the following

probability requirement;

P(CS|R(a,8,2)) > P* whenever wB(ek,Si) >cg + 8% (1.9)

where a, 6= 1,2, 1/k < P* < 1, 63* > 0 is a given constant.




[}
p—

(1.11)

0 wheng
¢ =

1  when g

u
N

Selection procedures - both subset selection and indifference zone approaches
- based on the statistics gﬂ‘) are studied by many authors including Lehmann (1963),
Bartlett and Govindarajule (1968), Gupta and McDonald (1970), Puri and Puri (1968),
(1969), Alam and Thompson (1971). Also procedures based on ﬂ(z) are studied by
McDonald (1972),(1973), Matsui (1974), Lee and Dudewicz (1974). A summary of

procedures based on ranks is seen in Gupta and McDonald (1980), Gupta and
Panchapakesan (1984).

A parameter configuration which gives the infimum of the probability of a correct
selection is called the least favorable configuration (LFC). It is fairly trouble-
some to obtain the LFC for both rules R(y,8,1) and R(a,8,2) using statistics
ﬂ‘]), ﬂfz) and still an open question in general (a,g = 1,2). Including the counter
example due to Rizvi and Woodworth (1970), Lee and Dudewicz (1974) and several
approaches done by above cited authors, perspective discussion on the LFC is
given in Gupta and McDonald (1980).

A purpose of this paper is to discuss the LFC in an asymptotic framework. An
order relation is assumed to hold between the gaps of parameters (1.10). This

assumption is similar to those considered by Puri and Puri (1968),(1969), Rlam

and Thompson (1971). The LFC's of the procedures are studied by using the exact

moments of the combined and the vector rank statistics ﬂ‘“), a =12, for




location and scale parameter cases (¢ = 1,2) and for both subset selection and

indifference zone approaches.
In Section 2, asymptotic distributions of ﬂf“), a = 1,2 are considered under
the assumption of order relation between gaps of parameters. PCS and LFC are

investigated in Section 3. Moments results are given in Section 4 as an Appendix.

2. Asymptotic Property

2.1 Moments of Ranks

Let us define the mean vector and variance-covariance matrix of H(]) by
Eﬁ(]) and Af(]) according as we are dealing with location (8 = 1) or scale (g = 2)
parameters. Under the population model we considered in Section 1, the elements

of Eg(]) and Ag(]) are given as follows. These relations are obtained from more

general results given in Theorem 4.1 of Appendix.

1) . 1.
) = hnfexar + 1,121,200k (2.1)

. 2

(K(3n-1)JG*dF, - 2k(2n-1)[FG*dF, + k’n[G*aF,

- kfH*dF, - K2n(JGrdF; )2 - (n-1)T(fFaF)Z - L i =g
i i JEdF)” -z s 1=

" g})%

kn{2 - fF dF,)[G*dF; + kn(2 - jFidFj)[G*dFi - nXIFmdFi]FmdFj
- 2k [FG*dF, - 2kn [F;G*df, + (F.dffF.dF,

2 2 . .
\ + [Fi dFj + ij dFi -1 i (2.2)
where
1 k
* - .
6*(x) = ¢ jZ] Fy(x) (2.3)
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’
7 w00 = 1§ F 200 2.4)
: X) = Ejé. j (x (2.
) In case of vector rank Ri§'2)’ the moments results are given in Matsui (1985)
. from which we obtain mean vector %(2)’ variance-covariance matrix %(2) of
statistic ﬂ(z) as foﬁows;
@) 2 pferdr, + 0, 4 =1.2,... .k (2.5)
UBi n j 2’ s Wgeery *
0 (n[2kferdF, - 2k[FGrdF, + k2[G+2dF, - KfHedF,
g - k¥(fexdr)? - 2] i=j
. )‘(2) =
giJj , _ _
- w n[k(2 ]Fdei)fG*dfj + k(2 JFidFJ.)fG*dFi
: k
-, - - -
: mzl [F_dF, JFdF 2kf FG*dF, 2kf F;6%dF
2 2 2 o
X + IFidFJ.]FJ.dF,. + [F, dF 5 + ]Fj dF, - 11, i#j (2.6)
\
.-'j 2.2 Assumption
. Let the gap of parameters 95 and ej be wB(ei,ej) as given in (1.10), according
g as the c.d.f, Fe (x) be location (g = 1) or scale (g = 2) family of distribution.
- i .
T When we treat the scale parameter, both of combined rank R#}) or vector rank Rgg)
: are given to the absolute value of observation xij from c.d.f. Fu (x)
: i
(i =1,2,...,k; j = 1,2,...,n). Thus the c.d.f. Ge (x) of Ixijl is given as
i
= F - -
G"i(X) ei(x) Fei( x) or
‘. G, (x) = 6(x/6;) = F(x/a;) = F(-x/p3), x » 0 (2.7)
. i
fa We assume the following relation to hold between the gaps of parameters
-\
A
_\
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wﬁ(ﬁi’ej). Note here that although we use the same notation Fi(x) for both

location or scale cases, we should read c.d.f. Fi(x) to be Gi(x) given in (2.7),
in case we are dealing with scale parameter.

We assume that

1 2
.,83) = .. n =2 T= = . 2.8
v, (05505) G * kg N St olnTE), g =1,2 (2.8)
where c is given by (1.11).
Then putting
Lij* /rT{fFJ.(x)dFi(x) - [Fi(x)df,(x)} (2.9)

we have the following lemma.

Lemma 2.1

For wg(ei,ej) (8 = 1,2) given by (2.8), we have the following

.. = .. 0 2.10
Lot KBU+ (1) ( )
where

K]..ffz(x)dx when g = 1
i = 1 ) : (2.11)

B1J KZij [ xf<(x)dx when g = 2

i,0 =1,2,...,k; i #].
Example:

When F(x) is normal N(0,1), we have for ws(ei,ej) given by (2.8).
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8
1
Iys: = —— kyss + 0(1) (2.12)
11j 2 /5 1ij
Lo.=1 ..+ o) (2.13)
2ij ®  2ij ’
2.3 Asymptotic Distribution
Let us define
wi(a) -1 (Hk'\a) . Hi(a))’ «=1,2 (2.14)
/n
that is
we)d oL ayle) - 1,2. (2.15)
LA A =T

wnere () = (=), w0, (e ey ) e 309 B

f; is a unit matrix of order k-1, g{k) = (1,1,...,1)" kxl1. N‘“) has a mean vector
i: n {8) . variances-covariance matrix {9 such that
v_': —B _ﬁ
?l (a) o 1 p,(a) (2.16)
b_' = - H .
: (a) -1 4, (a)p 2.17
3 " s 7 Mg (2.17)
(@) 40g (3 are qi

Elements of g and Eﬂ are given as

() _ 1 (a) (a) . -
i -;r‘]: ("p,k = Mg ), i 1,2,...,k-1 (2.18)
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h

E 9
;: ( (a) (a) (a) (
: a) -] a a a a) .
i IJB’-J' *n ()\813 - AB’“( - )\BkJ + XBkk ), i,j=1,2,...,k-1 (2.19)
E where ”é?) and Aﬁgg) are given by (2.1) through (2.6).
' Now under the assumption (2.8) using lemma 2.1, we have for g = 1,2 and
a = ],2
(a) = 1 1oy ; F.dF, - nf E F.dF.)
VS e LT I I
kol ; (a) 2.20)
— ] K. - K .. (zr ') (2.20
jo1 Bk ja1 B 81
J#i

as n » «, where Ksij is given by (2.11). Also since (2.8) is assumed, we have

-k/12 for i # j
Ny o —>
M el /e for i = j
and
: |-(k + 1)/12 for i ¢ j
3 285 )
i (k= - 1)/12 for i = j
3 Thus ofgg) goes to the following limit.
2v for i = j
o§$; s a (2.21)
v for i £ ]
o
wvhere
2 -
k=/12 when o = 1
. (2.22)
f @ k(k+1)/12 when o = 2




Thus by applying the central limit theorem, we have the following asymptotic

distribution of W(®).

w_(“) n N(_ﬁé“), _};é“)), B = 1,2 (2.23)

where i’,_(") = (ﬁéf;), F‘é;)"" ’ﬁé?zLI))' with elements given by (2.20) and

Eéa) = v (Eqeny + Gan)) (2.24)

where G(y 1) = d(k-1)2{k-1)-

3. PCS and LFC
Since the asymptotic distribution of !é") (a,8=1,2) is given by (2.23),

probability of a correct selection for rule R(q,8,Mm) (a,8.m=1,2) is given as

P(CS|R(a,8,m) = Pr() > - s(8,md )

= P"(!éa) < (ﬁéa) + slgamdy 1))/ V) (3.1)
where
de//m when m = 1
5(B’m) = (3_2)
0 when m = 2
gém) - Q‘éa) _ léa))/q (3.3)
and
gt(ia) " N(Q(R-U’ g-(k-l) * E(k-l)) (3.4)
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For the subset selection approach (o« = 1), since

“gkj = Fpij =0
and

“gkj 2 0
for large n, we have

(1
uf, ) TR

Also for indifference zone approach (a = 2), taking the requirement
*
'I’B(Bksei) > CB + 63

in mind, we have

225 (k[ F2(x)dx) Vi 6,8 when 8

8 (kfxF2(x)dx) /A +§2* J when 8 =

| i
N -l

Thus we have the following.
Theorem 3.1
Under the assumption of order restriction (2.8) and for large n, the LFC of

the PCS for rules R(a,8,1) (a,8=1,2) are given when

K, =0,4=21,2,...,k-1; a,8 = 1,2 ' (3.5)

and for rules R(a,8,2) (a,8=1,2) are given when

[ <

i = Cg t 8% 1= 12ue kel angeln2 (3.6)

Under the LFC, P(CS|R(a,B,m)) is evaluated as follows.

.'b!‘--
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12
P(CSIR(s8.m) > Pr(s®) < ((y(s.m) + 6(8.m)/AI 1)) (3.7)
where vais given by(2.22), s(g,m) is given by(3.2) and y(8,m) is defined as
v(g,1) =0 forg =1,2 (.8)

(k[ £2(x)dx) /i 61" for 8

]
o

v(8,2)

]
[a%]

S, *
(k]xfz(x)dx)Jﬁ'Txgz; for g

By using the evaluation formula of the integral over the domain of the normal

of the type (3.4), (see Gupta (1963)), we have the following reduced form of the

expression (3.7).

P{CS|R(a,B,m)) > !ok']{x + ((y(8,m) + &(g,m))//V )} de(x) (3.9)

for a,8,m = 1,2, where ¢(x) is the c.d.f. of Normal N(0,1).

The (relative asymptotic) efficiency of two selection procedures R, and R

1
is considered in the following way. Let us define the efficiency of procedure

2

R2 relative to procedure R] be the ratio of sample sizes

Eff(R],RZ) = n]/n2 (3.10)

where n; satisfies

PICSIRy ) pe = P* 4 1 = 1,2,

Then using the Theorem 3.1, we have the following.
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E ) Eff(R(1,0,1),R(2,8,1)) = (1+]/k)(d1/d2)2 , B =1,2,
i . Eff(R(a,1,1),R(x,2,1)) = (dl/dz)z , «=1,2,
: EFF(R(1,8,2) R(2,8,2)) = k/(k+1) 8 =12,
é Eff(R(,1,2),R(2,2,2)) = (51*52*/(1*62*))2 (U xf(x)ax/f P(x)dx)? , o = 1,2.

4. Appendix

v o=
Dol

Let us give the moments of combined ranks under the following population

-
v

model .

Let k populations T1s Tos -eesy be given. The c.d.f. of population T is

denoted by Fg(x) and is assumed to be continuous in x(s=1,2, ...,k). Take ng

i
L3
e
f‘.
N
nd
X

observations Xs], st, oo s XSn from population "s(s = 1,2. ..., k) and consider

S

the combined (Wilcoxon type) rank st of ij in such a way as we stated in Section

1. Then we have the following mean, variance and covariances of the rank st.

Theorem 4.1

_ ]
E(Rg;) = NfGdF_ + 5 (4.1)
V(R_.) = 2NfGAF. - 2NJF_GdF. + N2fG2dF_ - NfWdF. - N°(JGdF_)2 - 1/12 (a.2)
Sj S S S S S s .
K 2
Cov(Rsi,RSJ.) = 3NIGdFS - 4N]FsGdFS - mzl n, (JF dF )" - 112 (4.3)
Cov(Rg Ry 5) = N(2 - JF.dF ) [GdF, + N(2 - IFdet)IGdFS
k
- mzl n ) FdF S dF, - ZNIFtGdFS - 2NJF 6dF,
+

2 2
[F dF JFydFo + [FodF, + JF SdF -1 (4.4)

where s,t = 1,2,...,k, sft; i,J = 1,2,...,ns, itd; j'= l,2....,nt and

PP
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N= mz] n (4.5)
Lk

6() = T () (4.6)
1 K 2

(ORI AR (4.7)

Proof:

Let us give the sketch of proofs for (4.1) and (4.3) above. The remaining
results are alsoc obtained similarly.

Mean:

L]
]

Pr(R]] s) ; Pr(a| of X]'s, ay of Xz’s,...,ak of X, 's

k

A

X] < (n]-a]-l) of Xi's, (nz-az) of Xz‘s,..., (nk-ak)
of Xk's) . (4.8)

where ai(i=],2,...,k) is an integer such that

0 < a; <ny - 1,0 < a 5ni(i=2’3’°"’k) (4.9)

k
J a,=s -1 (4.10)
=

and "ai of Xi's", "("i'ai) of Xi's" should be read that a; variables out of

(xi]’ Xizg LRI Y Xini

summation Z is taken for all tuples (a],az....,ak) of integers which satisfy the

) and remaining ("i'ai) variables, and so forth., Further,

relations (4.9) and (4.10). From (4.8), we have
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E(Ryy) = | b{'] {SC;]-]\(:Z)“'( "\) 2 2 r:"

S:

-a,-1 n,-a n -a
x (1-r])‘ V-t R (R KK (4.1)

By changing the order of summation, we first add for s, and we have

a

-1 n a, a
- 2 k-1 1. 92 k-1
E(R);) j{( Xaz)'"<°k-1) Fy Fp & eee Fuly

n -a-l -]

n, .-a k-1
« (1-F) ! k-1

n,-a
272 k-1

k-1)

where the summation { is taken for all tuples (a],az,...,ak_]) of integers which
1

satisfy the relation (4.9). Adding in turn for A _1s 3_ps --e0dy W have the
result for E(R]]).

Covariance;

fFor s < t, we have

Pr(R]] R2] = t) = g Pr(a] of X]'s, a, of X2's, cees ay Of Xk's
< Xyy = by of Xi's, b, of X,'s, ..., b of X 's < X5y <cq0f X;'s, ¢, of
x2's, cee of Xk s) (4.12)

where a, bi’ Ci(i = 1,2,...,k) are integers such that
a; + by +coo=oug, T 21,2000k (4.13)

k k k
Joag=s -1, ) o by=t-s-1, I ci=n-t (4.14)

and vi =Ny - 1 for i =1,2, vi =Ny for i = 3,4.....,k.

1
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Summat ion E is taken for all tuples (a]....,ak,b],...,bk,c],...,ck)which satisfy
the relations (4.13) and (4.14). Then

I, = tP R =g, R, =t
! s§t : "l S Ry = )
=/ 1 Z 7 P, (x,y)dF{(x)dFy(y) (4.15)
x<y s<t B

where
V.

_ a, b. (o

Pi(x.y) = (a b1,c\Fil(X)(Fi(Y)-Fi(X)) TR T =12, k.

By changing the order of summation, we first add for s then for t and we have
k-1

= C P.{(x,y)dF dF
[ 3.} o e @)

kil kil (kil )2 (kz'l )(kzl )
C; =a; +8 a; +yy, ) b, #+ a.|™+
L AU S ICEARH I VB I

ay = nk(nk-l)Fk(x)Fk(y) + 3nka(x) + nka(y) +2

—
—
1]

and

By = nka(x) + nka(y) + 3
Yy = nka(x) +1,

Summation g is taken for all tuples (a],...,ak_],b],....bk_],c]....,ck_]) which

]
satisfies the condition (4.13). By adding in turn for a set (ai’bi’ci)

= k-1, k-2,...,1, we have reduced form of I]. By proceeding the similar steps

for } st Pr(R]] =s, RZ] = t), we have the covariance relation for Cov (Rll’RZI)'
s>t

For rank sums




we have

E(TS) = nsE(st) » 8 =1,2,...,k (4.17)
Cov (Ts’Tt) = n.n, Cov (st’Rtj')’ s,t = 1,2,...,k, s # kK (4.18)

and for variance

ng ng
V(T.) = ¥ V(R.;)+ § Cov (R_.,R .

: "5 sj if si’7sj)

: = Nn_(3n -1)[6dF - 2Nn_(2n 1) [F GdF,

) 2 2 2

) + N°n_[G°dF_ - Nn_[HdF_ - Non, ([GdF,)

: k 2 2

: - ns(ns-l) ) nm(]FmdFs) - ng /12 (4.19)

\ m=1

: Especially if Fi(x) = F(x) for all i, then we have

X
E(TS) = nS(N+l)/2 (4.20)
V(TS) = nS(N-ns)(N+1)/12 (4.21)

Cov (Ts’Tt) = -nsnt(NH)/'IZ (4.22)

Also for k=2, we have the following

E(Ti)= "i("iﬂ)/z + ninijJ.dF‘., i, J=1,2;3¢#1 (4.23)
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- 2
V(Ti) = ninj(Zni-])]Fdei + "inj("j'])fFj dF,

< 2 2 2
) + n].nj(ni-l)jFi dFj - ninj(ni+nj-l)(ij dF;)” - "i"j("i'])

i, =121 #3] (4.24)

N Cov (T,,T,) = n]nz[n]fF]szmszzdF] = (nq#n,-1)[F dF,fF,dF,
2 e 2
- (n=N)[F°dF, - (ny-1)fF,dF, - 1] (4.25)

- Finally we give a property which 1ies between ranks and distributions (para-
meters). Let Fi(x)'s be stochastically increasing family of distribution specified
by parameter 0;- Then we have the following.

Theorem 4.2

s E(Rg) > E(Ry) if and only if F. < F, where s,t = 1,2,...,k.

RSN

tataffd

-
.

.
.
.

"o 2’. 2% }\.“- '\' -.j.’-.kﬁ v \'.:' Tehe

e e
L . ‘

> '-’...l}-p '-",..\‘.‘-.-;.'.'q. % '-..\.‘\‘,‘.,'P AP AN "‘."'. . .f.'f ".“'u.'.- U
& A T A

T e ‘e e . . .. v .
A OR SR PR U5 P )i‘J




19

References

Alam, K. and Thompson, J. R. (1971). A selection procedure based on ranks
Ann. Inst. Statist. Math., 23, 253-262.

Bartlett, N. S. and Govindarajule, Z. (1968). Some distribution-free statistics
and their application to the selection problem, Ann. Inst. Statist. Math.,
20, 79-97.

Bechhofer, R. E. (1954), A single sample multiple decision procedure for
ranking means of normal populations with known variances, Ann. Math.
Statist. 25, 16-39.

Gupta, S. S. (1963). Probability integrals of multivariate normal and multi-
variate t, Ann Math. Statist., 34, 792-828.

Gupta, S. S. and McDonald, G. C. (1970). On some classes of selection proce-
dures based on ranks. Nonparametric Techniques in Statistical Inference
(Ed. M. L. Puri), Cambridge Univ. Press, London, pp. 491-514,

Gupta, S. S. and McDonald, G. C. (1980). Nonparametric procedures in multiple
decisions (Ranking and selection procedures), Mimeo Ser. No. 80-13,
Dept. of Statistics, Purdue University, West Lafayette, Indiana.

Gupta, S. S. and Panchapakesan, S. (1979). Multiple Decision Procedures:
Theory and Methodology of Selecting and Ranking Populations. John
Wiley & Sons.

Gupta, S. S. and Panchapekasan, S. (1984). Subset selection procedures: Review
and an assessment, Tech. Rep. No. 84-4, Dept. of Statistics, Purdue
University, west Lafayette, Indiana.

Lee, Y. J. and Dudewicz, E. J. (1974). Nonparametric ranking and selection
procedures. Tech. Rep. No. 105, Dept. of Statistics, The Ohio State
University, Columbus, Ohio.

Lehmann, E. L. (1963). A class of selection procedures based on ranks, Math.
Ann. 150, 268-275.

Matsui, T. (1974). Asymptotic behavior of a selection procedure based on rank
sums, J. Japan Statist. Soc., 4, 57-64.

Matsui, T. (1985). Moments of rank vector with applications to selection and
ranking, J. Japan Statist. Soc. 15, 17-25.

McDonald, G. C. (1972). Some multiple comparison selection procedures based
on ranks, Sankhya, Ser. A, 34, 53-64.

A IR I e T I I S S I i o P » - - - " 0 o ,
F A R AR RV R LS LF S RCRN SN RSP W SR I T |
GO SR A S S & -S?,t-im.-}.i- S TRV S I SN 202



RTINS S

20

McDonald, G. C. (1973). The distribution of some rank statistics with applica-
tions in block design selection problems, Sankhya, Ser. A, 35, 187-204.

Puri, M L. and Puri, P. S. (1969). Multiple decision procedures based on

ranks for certain problems in analysis of variance, Ann. Math. Statist.,
40, 619-632.

Puri, P. S. and Puri, M, L. (1968). Selection procedures based on ranks: scale
parameter case. Sankhya, Ser. A, 30, 291-302.

Rizvi, M. H. and Woodworth, G. G. (1970). On selection procedure based on

ranks: counter examples concerning the least favorable configurations,
Ann. Math. Statist., 41, 1942-1951.




-

T R-RT/SY [

ey,

-t - o

REPORT DOCUMENTATION PAGE e VEAD ISTRUC TS
| — CGRE COMPLE Tor, s
1. REPORY NIUMDER T2. GOVY ACCESSION NO | J. RECIFIENT 'S CATALGG NuUM'SL "

Technical Report #85-18

4 VITLE (snd Sublicle) )
. On the Least Favorable Configuration of a

$. TYPE OF REPORT & PEHICD COVERE!

Selection Procedure Based on Ranks Technical
. $. PERFOMMING ORG, REPCHT NLWBER
; Technical Report #85-19
. AU THMOR(e/ - - -
Shanti S. Gupta and Takashi Matsui . ﬁg%b?ﬁi%ﬁtéfﬁfgf“"“”““’
%, PEAFOAWING CRGANITATION NAME AND ADORESS 10, PHOGRAM F1 EMENT. GRCIE.T, Taia,

AREA 8 woRK UNIT MUuMIERS

Purdue University
Department of Statistics \

¢-—hest Lafayette, 1IN 47907 )
)2 "'_

11. CONTROLLING OFFICE NAME AND ADDRESS REPCRT DATE

. Office of Naval Research August 1985

I Washington, DC 13. NUMDER OF PAGES

20

T& MCONITORAING ASENCY NAME & ADDRESS(I! ditisrant from Controlltng Ottice) 15, SECURITY CL ASS. fof inte topcre

Unclassified

b — et e e e e
19e, DECLASMIFICATION COWHIRAL'NG
SCHEDULE

18, UISTRISJUTION STATEMENT ( ot this Repors)

Approved for public release, distribution unlimited.

7. CiSTMBOTION ST AT eMENT (of it.e alstract entered in Block 20, §f difterert feom Report)
i

18. SUPPLEMCNTARY ACTES

19. XE€¢ WORDS (Continve on reverse 2140 tf necessery and ldentily dv Block niwmber) '

Selection Procedures, Combined Ranks, Least Favorable Configuration, Moments |
of Ranks, Wildoxon Type, Friedman Type i

-
20. ABITRACY (Crntirue on tevecee aide It necessery end identily ay Block rumber!

Let us consider two types of statistics based on the sums of combined
(Wilcoxon type) ranks and vector (Friedman type) ranks. Underlying populations
are supposed to belong to the location or scale parameter family of distributions.

Two approaches - subset selection and indifference zone - of ranking and
selection procedures based on these statistics are considered in an asymwptotic
framework for selecting the population with the largest parameter value, The
least favorable confiqurations of parameters are discussed by computing the

DD | jan'7s 1473 .

SECURITY CLASSIFICATION OF Tris BAGE (#hen Date bnters

N e e - e " % T R U A TR TN TN
e et Tt a"n"a" A" 8 . " h_‘.l.‘.‘.".\-‘.w.q A S S ] ‘-)\.-.\.-‘.-.. .."- N BT et et N Tt ‘-'_‘~' B O T
e e e et T T A e '.','-':\'.‘-‘.\'-\-.'-‘.\ _‘-‘.‘-.‘.",.A.\'_:.P:n‘;. l",‘" .-...$4.£‘..'.L\L‘J.. -‘u\_“‘hn\‘; S aa Y Y AL RS 2yt el




Nt i ) il Ao i YA g et M A S B e R G i
R I 2 S DN et S R N i AR AL A A - AR DEOREEN N

exact moments of these statistics and introducing an assumption of order relation
between the gaps of parameters.

SECURITY CL ASSII"

TCATION OF Tiis PAGE Uhen Dete Entered)

R L N N N Ay A T




~——w— - ~ — S —
RPN i DA P AT S, & N AR A e VLIMEAACE ISP SI A e A OO LSS AN g i g™ eotiuincei e faps et ::-:T

- END

-
[

v r.w




